Bak: a downstream mediator of fenretinide-induced apoptosis of SH-SY5Y neuroblastoma cells.
نویسندگان
چکیده
Unlike 13-cis-retinoic acid, the synthetic retinoid fenretinide [N-(4-hydroxyphenyl)retinamide] induces apoptosis of neuroblastoma cells by mechanisms involving retinoic acid receptors and oxidative stress. After screening a cDNA array for apoptosis-related genes, the Bcl2-related protein Bak was identified as a fenretinide-inducible gene in SH-SY5Y neuroblastoma cells, and this was confirmed by Western blotting and flow cytometry. Although fenretinide acts synergistically in vitro with chemotherapeutic drugs, these drugs did not induce Bak expression. Retinoic acid receptor antagonists did not block the induction of Bak by fenretinide. Conversely, Bak induction was blocked by the antioxidant vitamin C. Overexpression of Bak increased apoptosis in both the presence and absence of fenretinide, whereas expression of antisense Bak inhibited fenretinide-induced apoptosis. Bak expression was also induced in cells overexpressing the stress-induced transcription factor GADD153, but Bak expression was inhibited in cells expressing an antisense GADD153 construct. These results suggest that Bak is a downstream mediator of an oxidative stress pathway leading to apoptosis of SH-SY5Y neuroblastoma cells in response to fenretinide.
منابع مشابه
Rheum turkestanicum Janisch Root Extract Mitigates 6-OHDA-Induced Neuronal Toxicity Against Human Neuroblastoma SH-SY5Y Cells
Background and Objective: Rheum turkestanicum (R. turkestanicum) has been known to reduce inflammation and has antioxidant properties such as protective effect in neurons. This study aimed to determine the effects of R. turkestanicum on neuronal toxicity induced by the pro-parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA) in neuroblastoma SH-SY5Y cells. Materials and Methods: MTT and DNA frag...
متن کاملInvolvement of Mu Opioid Receptor Signaling in The Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis
Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamineinduced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma...
متن کاملGangliosides link the acidic sphingomyelinase-mediated induction of ceramide to 12-lipoxygenase-dependent apoptosis of neuroblastoma in response to fenretinide.
BACKGROUND The lipid second messenger ceramide, which is generated by acidic and neutral sphingomyelinases or ceramide synthases, is a common intermediate of many apoptotic pathways. Metabolism of ceramide involves several enzymes, including glucosylceramide synthase and GD3 synthase, and results in the formation of gangliosides (GM3, GD3, and GT3), which in turn promote the generation of react...
متن کاملNeuroprotective effects of Salvia aristata Aucher ex Benth. on hydrogen peroxide induced apoptosis in SH-SY5Y neuroblastoma cells
Background and objectives: Oxidative stress is implicated in the neuronal damage associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotropic lateral sclerosis and cerebral ischemic stroke. The present work was designed to establish the neuroprotective effects of Salvia aristata extract on H2O2-induced apoptosis in human dopaminergic ...
متن کاملp53 mediates DNA damaging drug-induced apoptosis through a caspase-9-dependent pathway in SH-SY5Y neuroblastoma cells.
The signaling pathway for DNA damaging drug-triggered apoptosis was examined in a chemosensitive human neuroblastoma cell line, SH-SY5Y. Doxorubicin and etoposide induce rapid and extensive apoptosis in SH-SY5Y cells. After the drug treatment, p53 protein levels increase in the nucleus, leading to the induction of its transcription targets p21(Waf1/Cip1) and MDM2. Inactivation of p53, either by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 63 21 شماره
صفحات -
تاریخ انتشار 2003